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Abstract
We study a particular solvable potential and analyse the effect of PT symmetry
on its bound state as well as scattering solutions. We determine the transmission
and reflection coefficients for the PT -symmetric case and also formulate the
problem in terms of anSU(1, 1) potential group, which allows unified treatment
of the discrete and the continuous spectra in a natural way. We find that
(bound and scattering) states of the PT -symmetric problem supply a basis
for the unitary irreducible representations of the SU(1, 1) potential group, and
this gives a straightforward group theoretical interpretation of the fact that the
(complex) PT -invariant potential has a real energy spectrum.

PACS numbers: 0365F, 0356G, 0365N

Recently a rather intriguing invariance property of one-dimensional quantum mechanical
potentials has been identified. Hamiltonians admitting PT symmetry [1] are invariant under the
simultaneous operations of space and time reflection. PT -invariant problems have been studied
in quantum field theory [2], but they were also found to be relevant via mathematical analogies to
problems in solid state physics [3] and population biology [4]. For one-dimensional potentials
of non-relativistic quantum mechanics PT invariance requires (V (−x))∗ = V (x). Potentials
having this invariance property are usually complex; nevertheless, their bound-state energy
eigenvalues were found to be real. Such potentials have been identified in various approaches,
such as semiclassical [1, 5], numerical [6] and perturbative [7] methods, but exact analytical
solutions to some problems have also been given [8–15].

Most of the exactly solvable potentials are known to possess some kind of symmetry
property, which are formulated in terms of algebraic constructions (see e.g. [16–19]); therefore,
the question of how this new symmetry concept, PT symmetry, is related to the existing ones
emerges naturally. Among the various algebraic schemes the potential group approach [16]
deserves special attention for several reasons. First, the energy eigenvalues are obtained from
the eigenvalues of the Casimir operator of some algebra, and real eigenvalues of the latter
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operator are specific to particular (i.e. unitary) irreducible representations in the algebraic
framework. Second, in the potential group approach bound-state and scattering solutions
can be described in a unified way, i.e. in terms of the continuous and the discrete unitary
irreducible representations of a non-compact potential group [16]. This also opens the way
to the analysis of scattering solutions of PT -symmetric potentials, which, to our knowledge,
have not been studied previously, except for some considerations concerning transparent PT -
symmetric potentials [20, 21].

For our analysis we select an exactly solvable, but non-trivial potential which (i) is non-
singular on the x ∈ (−∞,∞) domain, (ii) has a PT symmetric version and (iii) has a
non-compact potential group associated with it. A potential of this kind is

V (x) = (λ2 − s(s + 1))
1

cosh2 x
+ λ(2s + 1)

sinh x

cosh2 x
. (1)

Curiously enough, this potential, which is a natural non-symmetric extension of the Pöschl–
Teller potential, has been overlooked in the literature, and it was studied first [22, 23] within
the context of supersymmetric quantum mechanics [24]. Here we have slightly simplified the
notation of [22, 23] in order to avoid heavier formulae later on.

The scattering amplitudes for the potential (1) have been studied in [23]. Here we
reproduce the formulae necessary for our purposes later on. Applying a form slightly different
from that in [23], the two independent solutions of the Schrödinger equation are

F1(x) = (1 + iy)−
s−iλ

2 (1 − iy)−
s+iλ

2 F

(
−s − ik,−s + ik, iλ− s +

1

2
; 1 + iy

2

)
(2)

and

F2(x) = (1 + iy)
s+1−iλ

2 (1 − iy)−
s+iλ

2 F

(
1

2
− iλ− ik,

1

2
− iλ + ik, s +

3

2
− iλ; 1 + iy

2

)
(3)

with y(x) = sinh x. According to [23] the transmission and reflection amplitudes are

T (k, s, λ) = �(−s − ik)�(s + 1 − ik)�( 1
2 + iλ− ik)�( 1

2 − iλ− ik)

�(−ik)�(1 − ik)�2( 1
2 − ik)

(4)

R(k, s, λ) = T (k, s, λ)
(

cos(πs) sinh(πλ)

cosh(πk)
+ i

sin(πs) cosh(πλ)

sinh(πk)

)
. (5)

(We have corrected a sign error in the denominator of (4) in equation (18a) of [23].) From
the analysis of the poles of the T coefficient, it turns out that potential (1), for s > 0, has
bound-state energy eigenvalues at

En = −(s − n)2 (6)

corresponding to −s − ik = −n, where n is a positive integer. In this case (2) turns into a
polynomial function of y(x) = sinh(x), which becomes normalizable only for s > n. This
condition gives rise to a finite number of bound states, as expected for a short-range potential.
Note that the energy eigenvalues depend only on the parameter s, and are free from λ.

Potential (1) was also found in a systematic search for shape-invariant potentials [25],
while in [19] an su(1, 1) potential algebra was assigned to it, with generators

J± = e±iφ

(
± ∂

∂x
− tanh x

(
Jz ± 1

2

)
− λ

cosh x

)
Jz = −i

∂

∂φ
. (7)

The basis functions are then written as

〈x|jm〉 = eimφψjm(x). (8)
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Besides carrying the extra phase factor, these wavefunctions are essentially the same as those
in (2). For bound states, the m = s + 1

2 and j = n − m substitutions have to be made. A
similar realization of the SU(1, 1) generators was also proposed later in [26], with λ being an
arbitrary complex parameter leading to non-unitary irreps.

The generators defined as in (7) satisfy the su(1, 1) algebra

[Jz, J±] = ±J± [J+, J−] = −2Jz. (9)

(We follow the usual notation and use small letters to refer to algebras.) The basis states (8)
are eigenstates of the Jz operator with eigenvalue m, and of the Casimir operator

C2 = −J+J− + J 2
z − Jz

= −J−J+ + J 2
z + Jz (10)

with eigenvalue j (j + 1). The Casimir operator is related to the Hamiltonian as

H = −C2 − 1
4 (11)

which also means that the energy eigenvalues are expressed as E = −(j + 1
2 )

2. The
ladder operators J± take a state with m and n to another state with m ± 1 and n ± 1,
while leaving j and the energy invariant, so this su(1, 1) algebra acts [19] as a potential
algebra [16] and the bound-state eigenfunctions belong to an infinite-dimensional discrete
unitary irreducible representation of the SU(1, 1) group denoted by D+

j , where m is bounded
from below: m = −j + n, n = 0, 1, 2, . . . . The action of J+ (J−) is then connecting solutions
in potentials with increasing (decreasing) depth, with also increasing (decreasing) principal
quantum number n. In [19] it was also shown that the generators J+ and J− essentially have
the same action as the supersymmetric shift operators A† and A, which also connect states of
the same energy in potentials having different depths.

While bound states are assigned to discrete unitary irreducible representations in the
SU(1, 1) potential group approach, scattering solutions are related to the continuous unitary
irreducible representationCδj [16]. In this case j = − 1

2 + ik holds, so the Casimir invariant has

negative eigenvalues 〈C2〉 = j (j + 1) = − 1
4 −k2; consequently, due to (11) the corresponding

energy eigenvalues are positive. The labelm which sets the potential strength (viam = s + 1
2 )

can now take integer (δ = 0) or half-integer (δ = 1
2 ) values.

Besides the bound and scattering solutions belonging to the unitary irreducible
representations of SU(1, 1), there are also resonance solutions appearing as poles of the
transmission amplitude (4) with complex wavenumber k = ±λ − i(n + 1

2 ). These belong
to non-unitary irreducible representations of the SU(1, 1) potential group [27].

One-dimensional potentials incorporating PT symmetry have to satisfy the relation
Ṽ (x) ≡ (V (−x))∗ = V (x). The P space reflection operation carries x into −x, while
T , the time reflection corresponds to complex conjugation. For some ordinary potentials the
substitution x → x + iε [11, 12] together with the replacement of the originally real coupling
constants of the odd terms with imaginary ones [11] secures PT invariance. This is the case
also with potential (1) [15]. This results in a non-Hermitian (complex) potential

Ṽ (x) = (−λ̃2 − s(s + 1))
1

cosh2(x + iε)
+ iλ̃(2s + 1)

sinh(x + iε)

cosh2(x + iε)
. (12)

A special case of this potential (with ε = 0) was mentioned in [21]. We note that the imaginary
coordinate shift iε can be interpreted in several ways. First, one can argue that the problem is
shifted to a domain of the whole complex x plane and in this sense it becomes similar to other
PT -invariant potential problems, for which the allowed x values are restricted to some wedges
in the x plane [1, 5, 10]. Second, however, one can also interpret it as a conventional complex
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potential defined on the x axis, because the potential terms can be easily rewritten in a form
which contains ε as a potential parameter (typically appearing in the argument of hyperbolic
and trigonometric functions), rather than an imaginary coordinate shift. See, for example,

cosh(x + iε) = cos ε cosh x + i sin ε sinh x (13)

and a similar expression for sinh(x + iε). In the former case special attention has to be paid to
the interpretation of the wavefunctions, since some fundamental quantities, such as the norm
of a wavefunction, might require non-standard definitions [28] when the potentials are defined
on the whole complex x plane. In particular, in [28], the analytic function ψ2(x) replaces the
standard |ψ(x)|2 in the definition of the norm: this suggests that also the quantum flux in the
continuity equation should be redefined in the complex x plane [5]. In the latter case, however,
no such complications occur, and one can follow the usual methods of dealing with complex
potentials of a real argument. In what follows we consider this latter option and interpret our
PT -invariant potential as a problem defined on the x axis.

Let us now study the implications of PT symmetry for the scattering solutions of this
problem. If we consider only the λ → iλ̃ substitution, then the forms of the transmission
and reflection amplitudes (4) and (5) remain unchanged. If we also apply the transformation
x → x̃ = x + iε, then T (k, s, λ) remains unchanged, while R(k, s, λ) in (5) is modified by
a multiplicative factor exp(2εk). This clearly shows that the |T |2 + |R|2 = 1 relation breaks
down in the PT symmetric case, which is not astonishing if we recall that we have complex
potentials in this case, in which the flux is not conserved. We note that although the extra
exp(2εk) factor increases the modulus of the reflection amplitude (5) if εk > 0, it remains
finite as long as ε < π/2. Since cosh(x + iπ2 ) = i sinh(x) (see also equation (13)), in this
limit (12) becomes [15] a singular (generalized Pöschl–Teller) potential, and equations (4)
and (5) do not apply.

Similar considerations hold in the case of negative ε, which would lead to a decrease of
the reflection coefficient.

The λ = iλ̃ substitution has no impact on the bound states, the energies of which are
obtained from the poles of T (k, s, λ) on the positive imaginary k axis with k = i(s − n).
Note, however, that the resonance states present in the Hermitian case at k = ±λ − i(n + 1

2 )

become states with real energy, when λ̃− 1
2 − n > 0 holds. This duplication of states seems

interesting, especially in light of the fact that in the Hermitian case the energy eigenvalues did
not depend on λ at all. However, we can note that the potential (1) has a symmetry with respect
to the replacement s ↔ iλ− 1

2 . This transformation changes the two independent solutions (2)
and (3) into each other, and replaces the bound-state solutions with the resonance-state solutions
described above.

In the PT -symmetric case, however, the two sets of solutions both have negative real
energies. This might be due to the fact that the real part of the potential deepens when λ has
imaginary values. In any case, it is remarkable that even those energy eigenvalues which are
complex in the Hermitian case become real when PT symmetry is imposed on the system.
This suggests that the reality of the energy eigenvalues is really very tightly related to PT
symmetry. One interesting aspect of the duplication of the bound-state energy spectrum is that
for s = −λ̃− 1

2 the energy levels coincide pairwise. In fact, the two types of solution become
identical in this case (see (2) and (3)), which means that the general theorem which forbids
the degeneracy of energy levels in one-dimensional potentials is not violated. We note that
similar level crossings are also present in some other PT -symmetric potentials [13, 14].

Now let us analyse what happens with the su(1, 1) algebra in the PT symmetric case.



Algebras and PT -symmetric potentials 843

With the x → x̃ ≡ x + iε and λ→ iλ̃ operations, J± become

J̃± = e±iφ

(
± ∂

∂x
− tanh(x + iε)

(
Jz ± 1

2

)
− iλ̃

cosh(x + iε)

)
(14)

while Jz = J̃z remains unchanged. (In order to simplify the notation we made use of the fact
that derivation with respect to x̃ has the same effect as derivation with respect to x.) Simple
calculations show that

PT J̃±(PT )−1 = J̃∓ PT J̃z(PT )−1 = −J̃z (15)

while the bound-state solutions remain unchanged, and only the phase factor eimφ changes
to e−imφ in (8). Note that the PT operation has the same effect on the two ladder operators
as Hermitian conjugation in the usual (Hermitian) case. The invariance of the Hamiltonian
is reached by the invariance of the Casimir invariant in both cases. However, while in the
Hermitian case the two lines of (10) are transformed into themselves by Hermitian conjugation,
the invariance of C2 under the PT operation is obtained by transforming the two lines of (10)
into each other.

One finds that the states of the PT invariant problem supply a basis for the unitary
irreducible representations of the SU(1, 1) potential group. Determining, for example, the
eigenvalues of J̃+J̃− and J̃−J̃+ by directly acting with the generators on the basis functions,
we find that they are real and negative, as expected for unitary representations of the present
SU(1, 1)group [29]. The real energy eigenvalues arise as the consequence of thePT invariance
of the problem. It is remarkable that even those states which, in the Hermitian case, appear
as resonances (and are assigned to non-unitary irreducible representations) develop into real-
energy bound states due to PT invariance. This has interesting group theoretical implications:
it can be shown that a second su(1, 1) � so(2, 1) algebra can also be associated with the present
problem, now with a basis provided by the solutions of type (3). Changing the originally real λ
to imaginary values iλ̃ turns the corresponding non-unitary irreps of this latter SU(1, 1) group
into unitary ones, thus converting the resonances to bound states. The direct sum of the two
so(2, 1) algebras is isomorphic to an so(2, 2) algebra, which is known to be related to the
Natanzon potential class [17, 18], to which potential (1) also belongs.

In summary, we have studied the effect of PT symmetry for an exactly solvable quantum
mechanical potential which has a non-compact SU(1, 1) potential group associated with
it. Besides the bound-state solutions of this complex potential, we have examined also the
effect of PT symmetry on the scattering solutions, a task which practically has not been
investigated previously. This is probably because many PT -symmetric problems studied
earlier are confining potentials. Defining the problem as a complex potential restricted to the x
axis, the transmission amplitude turns out to have the same functional form as in the Hermitian
case, while the reflection amplitude picks up an extra factor, violating the unitarity condition
|R|2 + |T |2 = 1.

The energy eigenvalues are found to be real, as is the case with PT -invariant potentials in
general. However, a new development is that even those states which appear as resonances and
possess complex energy eigenvalues in the Hermitian case become bound states with negative
real energy eigenvalues in the PT -symmetric version of the problem. This shows that the link
between PT symmetry and the reality of the energy eigenvalues is even stronger than known
previously.

We have also analysed how the algebraic construction changes when the PT -invariance
requirement is imposed on the potential. We have found, in analogy with the Hermitian version
of the problem, that the states of the PT -symmetric potential supply a basis for the unitary
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irreducible representations of the SU(1, 1) potential group, in this case too. This gives a
natural explanation for the real energy eigenvalues.

Results in agreement with our findings were independently obtained in [30], where bound
states, but not scattering states, of several PT -symmetric potentials were analysed in terms of
a complexified so(2, 1) algebra.
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